HPE 邊緣 分散式 AI

開啟AI創新技術新時代

HPE 推出邊緣與分散式架構 AI 群體學習方案

2022-05-18
HPE宣布推出HPE群體學習(HPE Swarm Learning)創新AI解決方案,加速從前端資料獲得所需的洞察。從病人疾病診斷資料到防詐騙偵測前端信用卡交易資料等應用,讓客戶在不侵犯資料隱私的情況下,跨地點或組織共享與統合AI模型的學習內容。

由HPE研發單位惠普實驗室開發的HPE群體學習解決方案,是第一個能保護資料隱私的分散式機器學習架構。這個專為前端與分散式資料設計的解決方案,提供客戶透過HPE群體學習API,可輕鬆整合AI模型,使用者可以立即與組織內部同仁以及外部組織共用AI模型的學習內容,提升訓練成效,而不需要共用實際的資料。

HPE執行副總裁暨HPC與AI部門總經理Justin Hotard表示,群體學習是強大的AI創新技術,並已在全球應用需求上取得了進展,例如提升病患醫療保健、改善異常偵測,以及協助偵測詐騙行為和預測性維護,HPE讓群體學習取得更重大的發展,藉由HPE的企業級解決方案,企業組織可以在各自的倫理規範、資料隱私要求與公司治理標準下進行合作與創新,並加速運用AI模型的能力。

導入創新AI方法,安全運用前端資料的洞察

今日大多數的AI模型訓練都需要依靠集中整合多源資料在單一地點進行,使用者需要搬移大量資料至同一個資料中心,不僅缺乏效率又相當昂貴。這種做法也受限於資料共享與移動產生資料隱私與所有權規則與規範的限制,易導致不精準或有偏差的模型出現。藉由在前端訓練模型並從前端獲得洞察力,企業組織可以在關鍵時刻更快做出決策,並獲得更佳的使用體驗與成效。也可讓不同企業組織在不同資料來源間分享學習內容,也能促進各產業的合作並改善智慧化能力,進而創造出優異的商業與社會成果。

HPE群體學習解決方案(Swarm Learning)運作過程。

在資料治理、法規或合規性的要求下,企業必須強制將資料留在內部,因此與外界共享資料可能會對企業造成挑戰。HPE群體學習解決方案能讓企業在資料來源的位置,使用分散式資料建立可以公平學習的機器學習模式。這樣一來,不僅能增加訓練所需的資料集,還能符合資料治理與隱私要求。為確保只共用前端的學習內容而非資料本身,HPE群體學習解決方案使用區塊鏈技術,可以安全加入成員、在成員中動態選擇領導者,並匯集模型參數,讓群體學習網路具備彈性復原力與安全性。由於HPE群體學習解決方案只能共享學習內容,因此使用者可以利用大量的訓練資料集而不用擔心違反隱私要求,同時降低偏差並提升模型的準確性。

 

 


追蹤我們Featrue us

本站使用cookie及相關技術分析來改善使用者體驗。瞭解更多

我知道了!