COMPUTEX 生成式人工智慧 生成式AI Generative Artificial Intelligence LLM 數位轉型

利用生成式 AI 掌握轉型契機與下一波成長曲線

2024-07-23
由於全球產業對生成式AI(Gen AI)、大語言模型(LLM)與數位轉型需求的快速成長,讓今(2024)年的COMPUTEX成為全球科技業關注焦點,更讓台灣資通訊產業成為各國媒體報導重要議題。

!此為分頁標誌前台不顯示!

劉峻誠:用NPU在地端執行企業GPT方案 可確保企業資料隱私並以低耗能型態運作

耐能智慧董事長劉峻誠表示,由於訓練模型與GPU伺服器成本因素,現階段很多生成式AI應用都是在雲端執行,也就是透過雲端執行GPT(Generative Pre-trained Transformer,生成式預先訓練轉換器)運算,除了使用者會面臨資料需要上傳雲端的資安問題外,也會碰到每次詢問答案都不太一樣的情況,這也造成企業導入AI所面臨的問題。

由於台灣廠商最有機會的是To B的生成式AI應用,再加上耐能是NPU的開發者和商標持有人,具備NPU加速器、AI晶片、AI演算法等關鍵技術,因此有辦法將 NPU 嵌入到設備中,讓產品具備AI功能。

劉峻誠指出,由於台灣廠商最有機會的是To B的生成式AI應用,因此耐能推出基於NPU技術的地端AI軟硬整合方案,內建Local RAG(檢索增強生成,Retrieval-Augmented Generation,簡稱RAG)功能,輕量級大語言模型甚至可以直接部署,運算速度快且低耗能,可應用於各種企業 GPT 方案。也就是企業可以在地端訓練/推論自己的資料,不需要上到雲端,確保資料安全性,更不用擔心模型被他人資料汙染的問題。目前已經在教育業、製造業、醫療業、法律業有應用案例。

針對AI趨勢,劉峻誠認為完整的系統應該是CPU+GPU+NPU,包括現在的AI PC、AI手機已經是這個架構,如果未來想要在低功耗的環境下導入生成式AI應用,NPU會是最佳幫手。

針對台灣AI人才的養成,劉峻誠是認為可以從兩個層面來補足人才缺口,第一個是教育,耐能有推出AI教科書,有科大版、國中版甚至是國小版。第二個就是直接在產業裡面導入AI技術,以耐能為例,很早就在IC設計當中的back end、routing導入AI技術,所以才能用12奈米製程量產晶片。


追蹤我們Featrue us

本站使用cookie及相關技術分析來改善使用者體驗。瞭解更多

我知道了!