採用機器學習典範轉移協助業務發展已經存在了幾十年。隨著足夠的可擴充運算力的到位、海量資料的爆炸,以及機器學習技術的快速進步,各行各業的客戶開始對業務進行重塑。最近,像ChatGPT這樣的生成式AI應用引起了廣泛的關注,引發了諸多想像。我們正處在一個機器學習被大規模採用的令人興奮的轉捩點上,我們也相信生成式AI將會重塑大量客戶體驗和應用程式。
!此為分頁標誌前台不顯示!
客製化的基礎模型可以帶來獨特的顧客體驗,體現公司的觀點、風格和服務,適用於眾多消費者產業,如金融銀行、旅行和醫療等。例如,一家金融公司如果需要將所有相關交易自動生成每日報告以供內部流通,它可以使用包括既往報告在內的專有資料來客製化模型,以便基礎模型瞭解如何閱讀報告和使用哪些資料來生成日報。
基礎模型擁有巨大的潛力,但我們仍處在初級階段。ChatGPT率先吸引了客戶對生成式AI的關注。對生成式AI展開研究的人很快意識到,多家公司已經在基礎模型上耕耘多年,可用的基礎模型也有很多,且各有各的優勢和特點。在過去的數年間,都經歷了技術的快速發展,機器學習的演進也是日新月異。期待未來會湧現全新的體系和架構,而基礎模型的多樣化會推動新一波的創新浪潮。此前所未聞的新應用體驗在今天已經成為現實。很多客戶都在詢問AWS,如何快速利用現今以及未來可能出現的技術,如何快速使用基礎模型和生成式AI立刻為公司業務大幅提升生產效率和變革產品與服務。
客戶對AWS提出了主要的需求。首先,需要能直接找到並存取高效能基礎模型,這些模型需要能夠給出最匹配業務場景的優秀回饋結果。其次,客戶希望無縫與應用程式整合,且無需管理大量基礎設施叢集,也不會增加過高的成本。最後,客戶希望能夠輕鬆上手,基於基礎模型,利用自己的資料(可多可少)建構差異化的應用程式。由於客戶進行客製化的資料是非常有價值的 IP,因此需要在處理過程中確保資料安全和隱私保護。同時,客戶還希望能控制資料的分享和使用。
聽取了客戶的意見,很高興推出Amazon Bedrock。這項新服務允許使用者透過API存取來自AI21 Labs、Anthropic、Stability AI和亞馬遜的基礎模型。Bedrock是客戶使用基礎模型建構和擴充生成式AI應用程式的最簡單方法,為所有開發者降低使用門檻。在Bedrock上,用戶可以透過可擴充、可靠且安全的AWS託管服務,存取從文本到圖像的一系列強大的基礎模型,以及今天發布的Amazon Titan基礎模型。
Amazon Titan基礎模型目前包括了兩個全新的大語言模型。憑藉Bedrock所帶來的無伺服器體驗,客戶可以輕鬆找到適合自身業務的模型,快速上手,在確保資料安全和隱私保護的前提下,使用自有資料基於基礎模型進行客製化,並使用已經熟悉的AWS工具和能力,將客製化模型整合並部署到客戶的應用程式中,同時無需管理任何基礎設施。比如,可以將基礎模型與Amazon SageMaker機器學習功能整合,使用Amazon SageMaker Experiments測試不同模型和使用Pipelines大規模管理基礎模型等。
也可使用Bedrock存取一些目前最領先的可用基礎模型。這將包括AI21 Labs開發的Jurassic-2多語種大語言模型系列,能夠根據自然語言指令生成文本內容,目前支援西班牙語、法語、德語、葡萄牙語、義大利語和荷蘭語。還有Anthropic開發的大語言模型Claude,它是基於Anthropic對於訓練誠實和負責任的AI(responsible AI)系統的大量研究,能夠執行多種對話和文本處理任務。客戶還可以透過Bedrock輕鬆存取Stability AI開發的文生圖基礎模型Stable Diffusion,這是文生圖領域目前最流行的模型,能夠生成獨特、寫實、高品質的圖像、藝術作品、商標和其它設計圖。
Bedrock最重要的能力之一是極其容易客製化模型。客戶只需向Bedrock展示Amazon S3中的幾個標註好的資料範例,Bedrock就可以針對特定任務微調模型,最少僅需20個範例即可,且無需標註大量資料。假設一位時裝零售產業的內容行銷經理,想為即將推出的手提包新品系列開發新穎且使用者導向的廣告創意。他向Bedrock提供了一些表現最佳的過往行銷廣告示例,以及新品的相關描述,Bedrock將能自動為這些新品生成有效的社交媒體推文內容、展示廣告和產品網頁。沒有任何客戶資料被用於訓練底層模型,所有資料都進行了加密,且不會離開客戶的虛擬私有雲(Virtual Private Cloud,VPC),確保客戶的資料安全和隱私保護。