!此為分頁標誌前台不顯示!
利用高等數學和統計學等獨特技能、機器學習和AI技術,資料科學家能夠將大量資料轉化為實際可行的計畫。隨著企業越來越深刻地認識資料驅動的價值,企業對資料科學家的需求也在不斷增長。若按照目前的發展趨勢,到2025年,資料科學家的數量將無法滿足企業不斷增長的人才需求。
隨著越來越多的機器使用AI與人類互動,它已逐漸成為企業重要的勞動力。在擁有機器員工的企業中,業務主管必須設法讓它們更有效地彼此合作。例如,製造公司可以使用AI機器人在倉庫中自動定位和存放產品;車載系統可以使用數學模型來躲避障礙,確定最佳路線,大幅提高分揀包裝流程效率。
機器學習技術能幫助企業改善營運,但也可能成為網路駭客的「幫兇」。現在駭客已經會編寫自動化系統來攻擊企業網路,竊取敏感性資料,而人工智慧和物聯網技術很快也將被加以利用。現實中,隨著儲存的個人資訊越來越多,互聯設備成為了駭客新的攻擊目標,惡意物聯網可以感染互聯設備,讓駭客竊取身份資訊,發起分散式阻斷服務攻擊(DDos)。Forrester指出,物聯網的快速應用帶來了更大的攻擊面,而嚴重不足的安全措施又進一步加劇企業風險。同樣,隨著企業和個人越來越依賴雲端儲存,駭客可攻擊的區域也越來越廣。
甲骨文預測,2025年,80%的資安攻擊將來自企業內部。從網路服務到資料庫,現代企業技術體系的每個層面都有可能出現被駭客利用的漏洞。很多情況下,企業無法快速安裝安全修補程式、自動化的缺失也導致人為錯誤風險居高不下。在甲骨文看來,面對不斷成長的安全威脅,企業的最佳選擇是運用自主技術來自動修補程式,24小時全天候地確保系統完整性。
在未來幾年,大多數安全威脅都與物聯網的「物」相關。例如,據Forrester預測,駭客會阻斷家庭照明系統等產品的網路連接,或者干擾工廠製程系統的運行,並用這些設備作為「人質」,要求製造商支付大筆贖金。
截至2025年,80%的身份資料將與「物」相關,而不是「人」。屆時身份資料的規模將達到前所未有的水準,且大多分佈在使用者、應用和生態系統中。以情境感知(context)為基礎的身份資料會連結行為、位置、使用模式、系統資訊等相關資料,網路安全專家可以利用這些資料、機器學習和AI技術來預測行為和模式,揭露潛在安全威脅。借助機器學習和預測分析,企業將能夠提高系統能見度,以進階的自動化水準發現可疑活動。