AWS 機器學習 ML機器學習

Amazon SageMaker 新功能 加速機器學習模型開發流程

2020-12-16
Amazon SageMaker是面向機器學習開發者的一個整合式開發環境,是一項全託管的服務,消除機器學習過程中每個階段的挑戰,使開發人員和資料科學家日常能夠從根本上更輕鬆、更快速的建構、訓練和部署機器學習模型。

!此為分頁標誌前台不顯示!

Amazon SageMaker Edge Manager

在製造業中,需要許多邊緣推斷的應用,如異常偵測或是品質檢測,在邊緣裝置提供低延遲且準確推斷對於工廠的運行效率十分重要,這次發布的Edge Manager能在雲端訓練精確模型,針對不同的邊緣置進行壓縮與優化,達到加速推斷速度至二倍並降低所需記憶體至十分之一,提升了邊緣推斷的效能。

另外,邊緣推斷面臨的另一個問題是,如果機器學習模型因為環境變遷之故準確率隨時間變動,將對產線效率及產品品質有重大影響。Amazon SageMaker Edge Manager 讓使用者加密上傳模型及推斷資料至Amazon SageMaker,對模型推斷效能進行監控,提早發現模型準確度變動的問題,先一步提供根據最新資料優化的模型,維持產線效率及產品品質。


追蹤我們Featrue us

本站使用cookie及相關技術分析來改善使用者體驗。瞭解更多

我知道了!